The double-resonance theory

150th Anniversary of the Bell Vowel Model 2

September 2017 saw the 150th anniversary of Alexander Melville Bell’s vowel model, that was briefly explained by the double-resonance theory.

The single-resonance theory was the standard for a couple of hundred years until the beginning of the 20th century, expressing the belief that a typical vowel tone arose in an anterior (mouth) cavity whose dimensions determined the pitch of the resonance. Alexander Melville Bell’s (1867) vowel model was based on this theory. But Helmholtz had already discovered and reported a second, lower, resonance in front vowels in (1863). Alexander Graham Bell (1879) reported two resonances for all vowels and proposed the double-resonance theory to explain them, assigning the lower resonance to a posterior (throat) cavity and the higher resonance to an anterior (mouth) cavity. Finally, Lloyd (1890-92) found a third resonance and assigned it to a cavity between the lips.

– Bell, A. G. 1879. Vowel Theories. American Journal of Otology 1.
– Bell, A. M. 1867. Visible Speech. London, Methuen.
– Helmholtz, H. von. 1863. Die Lehre von den Tonempfindungen. Braunschweig.
– Lloyd, R. J. 1890-92. Speech Sounds, their Nature and Causation. Phonetische Studien 3-5.

Sir Richard Paget (1930: p 41) was told by Jones in the 1920s that the lower resonance was not generally recognized except for the front vowels, implying that a majority of phoneticians around 1920 would still not have ventured beyond Helmholtz, and would have rejected A. G. Bell’s two resonances, and Lloyd’s third resonance. That was apparently the solution of the day at the beginning of the 20th century, two resonances for front vowels only, each resonance uniquely in its own cavity, doubting A G Bell’s two resonances in back vowels, and overlooking Lloyd’s contribution in silence. The double-resonance theory, a central theme of Paget (1930), placed F1 in the pharynx and F2 in the mouth for all vowels. It was a useful approach for a few more decades, seemingly underpinning a more ambitious spectral explanation for the Bell model, supported by electronic models. It was finally superseded by the work of Chiba & Kajiyama (1941) and Fant (1960) who demonstrated any number of formants simultaneously, each with its own standing wave throughout the entire length of the vocal tract, the frequency of every formant being modified by local narrowing anywhere in the vocal tract. So it finally turned out that F2 is not tuned uniquely in the mouth, nor F1 uniquely in the pharynx, demonstrated again by Fant (1980) who showed that F2 of [i] had substantially more reactive energy in the pharynx but little in the palatal passage (i.e. that F2 of [i] is more sensitive to tongue movement posteriorly in the pharynx than anteriorly in the palatal passage, contradicting the expectation of the double resonance theory).

– Chiba & Kajiyama. 1941. The Vowel; its Nature and Structure. Tokyo. Reprinted in 1958, Phonetic Society of Japan.
– Fant, C. G. M. 1960. The Acoustic Theory of Speech. the Hague, Mouton.
– Fant, C. G. M. 1980. The relation between area functions and the acoustic signal. Phonetica 37:55-86.
– Paget, R. S. 1930. Human Speech. London.
Top
©Sidney Wood and SWPhonetics, 1994-2019

About swphonetics

Retired research fellow, formerly at the university of Lund, Sweden
This entry was posted in Articulation, Phonetics, Vowels and tagged , , , . Bookmark the permalink.